Keep It SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single Image

نویسندگان

  • Federica Bogo
  • Angjoo Kanazawa
  • Christoph Lassner
  • Peter V. Gehler
  • Javier Romero
  • Michael J. Black
چکیده

We describe the first method to automatically estimate the 3D pose of the human body as well as its 3D shape from a single unconstrained image. We estimate a full 3D mesh and show that 2D joints alone carry a surprising amount of information about body shape. The problem is challenging because of the complexity of the human body, articulation, occlusion, clothing, lighting, and the inherent ambiguity in inferring 3D from 2D. To solve this, we first use a recently published CNN-based method, DeepCut, to predict (bottom-up) the 2D body joint locations. We then fit (top-down) a recently published statistical body shape model, called SMPL, to the 2D joints. We do so by minimizing an objective function that penalizes the error between the projected 3D model joints and detected 2D joints. Because SMPL captures correlations in human shape across the population, we are able to robustly fit it to very little data. We further leverage the 3D model to prevent solutions that cause interpenetration. We evaluate our method, SMPLify, on the Leeds Sports, HumanEva, and Human3.6M datasets, showing superior pose accuracy with respect to the state of the art.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تخمین چنددوربینی حالت سه بعدی انسان با برازش افکنش مدل اسکلت سه بعدی مفصل دار در تصاویر سایه نما

Automatic capture and analysis of human motion, based on images or video is important issue in computer vision due to the vast number of applications in animation, surveillance, biomechanics, Human Computer Interaction, entertainment and game industry. In these applications, it is clear that 3D human pose estimation is an essential part. Therefore, its accuracy has a great effect on the perform...

متن کامل

Automatic, Effective, and Efficient 3D Face Reconstruction from Arbitrary View Image

In this paper, we propose a fully automatic, effective and efficient framework for 3D face reconstruction based on a single face image in arbitrary view. First, a multi-view face alignment algorithm localizes the face feature points, and then EM algorithm is applied to derive the optimal 3D shape and position parameters. Moreover, the unit quaternion based pose representation is proposed for ef...

متن کامل

Towards Accurate Markerless Human Shape and Pose Estimation over Time

We address the problem of accurately estimating human shape, pose, and motion from images and video without markers or special cameras. Existing methods often assume known backgrounds, static cameras, and sequence specific motion priors. Here we propose a method that is fully automatic and, given multi-view video, estimates 3D human motion and body shape. Our work is built upon the recent SMPLi...

متن کامل

Indirect deep structured learning for 3D human body shape and pose prediction

In this paper we present a novel method for 3D human body shape and pose prediction. Our work is motivated by the need to reduce our reliance on costly-to-obtain ground truth labels. To achieve this, we propose training an encoder-decoder network using a two step procedure as follows. During the first step, a decoder is trained to predict a body silhouette using SMPL [2] (a statistical body sha...

متن کامل

SEDAI et al.: LOCALIZED FUSION OF FEATURES FOR 3D HUMAN POSE ESTIMATION 1 Localized fusion of Shape and Appearance features for 3D Human Pose Estimation

This paper presents a learning-based method for combining the shape and appearance feature types for 3D human pose estimation from single-view images. Our method is based on clustering the 3D pose space into several modular regions and learning the regressors for both feature types and their optimal fusion scenario in each region. This way the complementary information of the individual feature...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016